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Abstract

We discover a multi-Hamiltonian structure of a complex Monge–Ampère
equation (CMA) set in a real first-order 2-component form. Therefore, by
Magri’s theorem this is a completely integrable system in four real dimensions.
We start with Lagrangian and Hamiltonian densities and obtain a symplectic
form and the Hamiltonian operator that determines the Dirac bracket. We
have calculated all point symmetries of the 2-component CMA system and
Hamiltonians of the symmetry flows. We have found two new real recursion
operators for symmetries which commute with the operator of a symmetry
condition on solutions of the CMA system. These operators form two Lax
pairs for the 2-component system. The recursion operators, applied to the first
Hamiltonian operator, generate infinitely many real Hamiltonian structures.
We show how to construct an infinite hierarchy of higher commuting flows
together with the corresponding infinite chain of their Hamiltonians.

PACS numbers: 04.20.Jb, 02.40.Ky
Mathematics Subject Classification: 35Q75, 83C15

1. Introduction

In an earlier paper [1] we presented a complex multi-Hamiltonian structure of Plebañski’s
second heavenly equation [2], which by Magri’s theorem [3] proves that it is a completely
integrable system in four complex dimensions. We expect that Plebañski’s first heavenly
equation also admits a multi-Hamiltonian structure, since these two equations, governing
Ricci-flat metrics with (anti-)self-dual Riemann curvature 2-form, are related by a Legendre
transformation of the corresponding heavenly tetrads [2]. However, since both Plebañski’s
equations are complex, their solutions are potentials of the complex metrics that satisfy
Einstein equations in complex four-dimensional spaces. In the case of the complex Monge–
Ampère equation (CMA), which governs the (anti-)self-dual gravity in real four-dimensional
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spaces with either Euclidean or ultra-hyperbolic signature, we have an additional condition
that symplectic, Hamiltonian and recursion operators should all be real. Furthermore, the
transformation between the two heavenly equations cannot be applied to transform the second
heavenly equation to CMA because the latter equation is real and therefore the multi-
Hamiltonian structure of CMA cannot be obtained by transforming the multi-Hamiltonian
structure of the second heavenly equation given in [1]. Therefore, in this paper we analyze
the complex Monge–Ampère equation independently of our previous work and obtain real
recursion operators for symmetries and real multi-Hamiltonian structures of CMA.

In section 2, we start with the complex Monge–Ampère equation in a 2-component first-
order evolutionary form with the Lagrangian that is appropriate for Hamiltonian formulation.
In section 3, we discover a symplectic structure and Hamiltonian structure of this CMA system.
In section 4, we transform the Hamiltonian density and Hamiltonian operator to real variables
and introduce a convenient notation needed later to arrive at a compact form of recursion
operators and higher Hamiltonian operators. In section 5, we derive a symmetry condition,
which determines symmetries of the CMA system, in a 2-component form and real variables,
using our new notation. We have calculated all point symmetries of the CMA system and
Hamiltonians of the symmetry flows that yield conservation laws for the CMA system. In
section 6 we obtain two new real recursion operators for symmetries which commute with an
operator of the symmetry condition on solutions of the CMA system. Moreover, these two
couples of operators form two Lax pairs for the 2-component system. In section 7 we apply
these recursion operators to the first Hamiltonian operator and discover further Hamiltonian
structures of the CMA system. Repeating this procedure for the second Hamiltonian operator,
we could generate infinitely many Hamiltonian structures of the CMA system. This multi-
Hamiltonian structure of the CMA system proves its complete integrability in the sense of
Magri and hence complete integrability of the (anti-)self-dual gravity in four real dimensions
with either Euclidean or ultra-hyperbolic signature. In section 8, we construct an infinite
hierarchy of higher flows and show the way of calculating the corresponding infinite chain of
higher Hamiltonians.

2. An evolutionary first-order form of the complex Monge–Ampère

equation and its Lagrangian

The four-dimensional hyper-Kähler metrics

ds2 = u11̄ dz1 dz̄1 + u12̄ dz1 dz̄2 + u21̄ dz2 dz̄1 + u22̄dz2 dz̄2 (2.1)

satisfy Einstein field equations with either Euclidean or ultra-hyperbolic signature, if the
Kähler potential u satisfies the elliptic or hyperbolic complex Monge–Ampère equation

u11̄u22̄ − u12̄u21̄ = ε (2.2)

with ε = ±1 respectively [2]. Here u is a real-valued function of the two complex variables
z1, z2 and their conjugates z̄1, z̄2, the subscripts denoting partial derivatives with respect to
these variables. Such metrics are Ricci-flat and have (anti-)self-dual curvature.

In order to discuss the Hamiltonian structure of CMA (2.2), we shall replace the complex
conjugate pair of variables z1, z̄1 by the real time variable t = 2�z1 and the real space variable
x = 2�z1 and change the notation for the second complex variable z2 = w. Then (2.2)
becomes

(utt + uxx)uww̄ − utwutw̄ − uxwuxw̄ + i(utwuxw̄ − uxwutw̄) = ε. (2.3)
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Now we can express (2.3) as a pair of first-order nonlinear evolution equations by introducing
an auxiliary dependent variable v = ut ,{

ut = v

vt = −uxx + 1
uww̄

(vwvw̄ + uxwuxw̄ + i(vw̄uxw − vwuxw̄) + ε),
(2.4)

so that finally (2.2) is set in a 2-component form. For the sake of brevity we shall henceforth
refer to (2.4) as the CMA system.

The Lagrangian density for the original form (2.2) of the complex Monge–Ampère
equation was suggested in [4]

L = 1
6 [u1u1̄u22̄ + u2u2̄u11̄ − u1u2̄u21̄ − u2u1̄u12̄] + εu, (2.5)

but this must be cast into a form suitable for passing to a Hamiltonian. This requires that the
form of a Lagrangian should be appropriate for applying Dirac’s theory of constraints [5]. We
choose the Lagrangian density for the first-order CMA system (2.4) to be degenerate, that is,
linear in the time derivative of unknown ut and with no vt :

L = 1
6

{(
u2

x − 3v2)uww̄ + uwuw̄uxx − ux(uwuxw̄ + uw̄uxw)

+ ut (2i(uwuxw̄ − uw̄uxw) + 6vuww̄))
}

+ εu (2.6)

which, after substituting v = ut , coincides with our original Lagrangian (2.5) up to a total
divergence.

3. Symplectic and Hamiltonian structures

Since the Lagrangian density (2.6) is linear in ut and has no vt , the canonical momenta

πu = ∂L

∂ut

= i

3
(uwuxw̄ − uw̄uxw) + vuww̄

πv = ∂L

∂vt

= 0
(3.1)

cannot be inverted for the velocities ut and vt and so the Lagrangian is degenerate. Therefore,
according to Dirac’s theory [5], we impose them as constraints

φu = πu +
i

3
(uw̄uxw − uwuxw̄) − vuww̄ = 0

φv = πv = 0
(3.2)

and calculate the Poisson brackets of the constraints (more details of this procedure were given
in [1])

Kik = [φi(x,w, w̄), φk(x
′, w′, w̄′)] (3.3)

collecting results in a 2 × 2 matrix form, where the subscripts run from 1 to 2 with 1 and
2 corresponding to u and v, respectively. This yields the symplectic operator K that is the
inverse of the Hamiltonian operator J0:

K =
(

(vw̄ − iuxw̄)Dw + (vw + iuxw)Dw̄ + vww̄ −uww̄

uww̄ 0

)
(3.4)

as an explicitly skew-symmetric local operator. The symplectic 2-form is a volume integral
� = ∫

V
ω dx dw dw̄ of the density

ω = 1
2 dui ∧ Kij duj = 1

2 (vw̄ − iuxw̄) du ∧ duw + 1
2 (vw + iuxw) du ∧ duw̄ + uww̄ dv ∧ du

(3.5)

3



J. Phys. A: Math. Theor. 41 (2008) 395206 Y Nutku et al

where u1 = u and u2 = v. In ω, under the sign of the volume integral, we can neglect all the
terms that are either total derivatives or total divergencies due to suitable boundary conditions
on the boundary surface of the volume.

For the exterior differential of this 2-form we obtain

dω = −idux ∧ duw ∧ duw̄

= −(i/3)(Dx(du ∧ duw ∧ duw̄) + Dw(dux ∧ du ∧ duw̄)

+ Dw̄(dux ∧ duw ∧ du)) ⇐⇒ 0, (3.6)

that is, a total divergence which is equivalent to zero, so that the 2-form � is closed and hence
symplectic. The Hamiltonian operator J0 is obtained by inverting K in (3.4)

J0 =
⎛
⎝ 0 1

uww̄

− 1
uww̄

vw̄ − iuxw̄

2u2
ww̄

Dw + Dw
vw̄ − iuxw̄

2u2
ww̄

+ vw + iuxw

2u2
ww̄

Dw̄ + Dw̄
vw + iuxw

2u2
ww̄

⎞
⎠ (3.7)

which is explicitly skew-symmetric. It satisfies the Jacobi identity due to (3.6).
The Hamiltonian density is

H1 = πuut + πvvt − L

with the result

H1 = 1
6

[(
3v2 − u2

x

)
uww̄ − uwuw̄uxx + ux(uw̄uxw + uwuxw̄)

] − εu. (3.8)

The CMA system can now be written in the Hamiltonian form with the Hamiltonian density
H1 defined by (3.8)(

ut

vt

)
= J0

(
δuH1

δvH1

)
, (3.9)

where δu and δv are Euler–Lagrange operators [6] with respect to u and v applied to the
Hamiltonian density H1 (they correspond to the variational derivatives of the Hamiltonian
functional

∫
V

H1 dV ).

4. Transformation to real variables

In the case of CMA, which governs (anti-)self-dual gravity with either Euclidean or ultra-
hyperbolic signature, we have an additional condition that all the objects in the theory, in
particular a recursion operator, should be real. Therefore, we transform the Hamiltonian
density together with the symplectic and Hamiltonian operators to real variables y = 2Rew
and z = 2Imw. The Hamiltonian density in the real variables becomes

H1 = 1
6

[(
3v2 − u2

x

)
	(u) − (

u2
y + u2

z

)
uxx + 2ux(uyuxy + uzuxz)

] − εu

where 	(u) = uyy + uzz, which simplifies after canceling terms that are total derivatives as

H1 = 1
2 [v2	(u) − uxx(u

2
y + u2

z)] − εu. (4.1)

The transformation of the Hamiltonian operator J0 in (3.7) yields

J0 =
⎛
⎝ 0 1

a

−1
a

1
a2 (cDy − bDz) + (Dyc − Dzb) 1

a2

⎞
⎠ , (4.2)

where we introduce the notation

a = 	(u), b = uxy − vz, c = vy + uxz, Q = b2 + c2 + ε

a
(4.3)

4
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that we will use from now on throughout the paper, with Dy and Dz designating operators of
total derivatives with respect to y and z, respectively. The definitions (4.3) imply the relations

ax = by + cz, cy − bz = 	(v), (4.4)

where 	 = D2
y + D2

z is the two-dimensional Laplace operator.
The symplectic operator (3.4) in the real variables becomes

K = J−1
0 =

(
cDy − bDz + Dyc − Dzb −a

a 0

)
(4.5)

in an explicitly skew-symmetric form.
The CMA system (2.4) in the real variables becomes(

ut

vt

)
= J0

(
δuH1

δvH1

)
=

(
v

Q − uxx

)
(4.6)

or ut = v, vt = Q − uxx .
As a consequence of the definitions (4.3) and equations of motion (4.6), we have the

following useful relations:

at = cy − bz, bt = cx − Qz, ct = Qy − bx, (4.7)

Qt = 2c(Qy − bx) + 2b(cx − Qz)

a
− (cy − bz)

a
Q, Qx = 2ccx + 2bbx

a
− ax

a
Q

Qy = 2ccy + 2bby

a
− ay

a
Q, Qz = 2ccz + 2bbz

a
− az

a
Q.

(4.8)

The four-dimensional hyper-Kähler metrics (2.1) in the real variables in the notation (4.3)
become

ds2 = 1
4

[
Q(dt2 + dx2) + a(dy2 + dz2)

]
+ 1

2

[
c(dt dy + dx dz) − b(dt dz − dx dy)

]
. (4.9)

The metrics (4.9) satisfy Einstein field equations with either Euclidean or ultra-hyperbolic
signature, if the 2-component potential (u, v) in the definitions (4.3) of a, b, c and Q satisfies
the Hamiltonian CMA system (4.6) with ε = +1 or ε = −1, respectively. These metrics are
again Ricci-flat and have (anti-)self-dual curvature.

5. Symmetries and integrals of motion

Now, consider Lie group of transformations of the system (4.6) in the evolutionary form,
when only dependent variables are transformed, and let τ be the group parameter. Then Lie
equations read

uτ = ϕ, vτ = ψ, (5.1)

where  = (ϕ

ψ

)
is a 2-component symmetry characteristic of the system (4.6). The differential

compatibility conditions of equations (4.6) and (5.1) in the form utτ −uτt = 0 and vtτ −vτt = 0
result in the linear matrix equation

A() = 0, (5.2)

where A is the Frechét derivative of the flow (4.6):

A =
(

Dt −1

D2
x − 2

a (cDz + bDy)Dx + Q
a 	, Dt − 2

a (cDy − bDz)

)
(5.3)

where the first row of (5.2) yields ϕt = ψ .

5
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Using the software packages LIEPDE and CRACK by Wolf [7], run under REDUCE 3.8,
we have calculated all point symmetries of the CMA system (4.6), a class of solutions of the
matrix equation (5.2). We list their generators and 2-component symmetry characteristics [6],
the latter being denoted by ϕu, ϕv

X1 = t∂t + x∂x + u∂u, ϕu
1 = u − tv − xux, ϕv

1 = t (uxx − Q) − xvx

X2 = z∂y − y∂z, ϕu
2 = yuz − zuy, ϕv

2 = yvz − zvy

X3 = ∂z, ϕu
3 = uz, ϕv

3 = vz

X4 = ∂y, ϕu
4 = uy, ϕv

4 = vy (5.4)

X5 = y∂y + z∂z + u∂u + v∂v, ϕu
5 = u − yuy − zuz, ϕv

5 = v − yvy − zvz

Xα = α(t, x, y, z)∂u + αt(t, x, y, z)∂v, ϕu
α = α, ϕv

α = αt

Xβ = βz(y, z)∂x − βy(y, z)∂t , ϕu
β = βyv − βzux, ϕv

β = βy(Q − uxx) − βzvx,

where α(t, x, y, z) is an arbitrary smooth solution of the equations

	(α) = 0, αtt + αxx = 0, αtz − αxy = 0, αty + αxz = 0, (5.5)

whereas β(y, z) satisfies the two-dimensional Laplace equation 	(β) = 0.
We shall find the integrals of motion generating the point symmetries that serve as

Hamiltonians of the symmetry flows(
uτ

vτ

)
=

(
ϕu

ϕv

)
= J0

(
δuH

δvH

)
, (5.6)

where the symmetry group parameter τ plays the role of time for the symmetry flow (5.6) and
H = ∫ +∞

−∞ H dx dy dz is an integral of the motion along the flow (4.6), with the conserved
density H, that generates the symmetry with the 2-component characteristic ϕu, ϕv . The
second equality in (5.6) is the Hamiltonian form of Noether’s theorem that gives a relation
between symmetries and integrals.

We choose here the Poisson structure determined by our first Hamiltonian operator J0

since we know its inverse K given by (4.5), which is used in the inverse Noether theorem(
δuH

δvH

)
= K

(
ϕu

ϕv

)
(5.7)

determining conserved densities H corresponding to the known symmetry characteristics
ϕu, ϕv .

Using (5.7), we reconstruct the Hamiltonians of the flows (5.6) for all variational point
symmetries in (5.4). For the scaling symmetries generated by X1 and X5, Hamiltonians do
not exist and so they are not variational symmetries. For the rotational symmetry generated
by X2, the Hamiltonian is

H2 = v(yuz − zuy)	(u) − ux

[
2(zuy + yuz)uyz + u2

y + u2
z

]
. (5.8)

For translational symmetries generated by X3 and X4, the corresponding Hamiltonians H3 and
H4 are

H3 = vuz	(u) + 2
3ux(uyuzz − uzuyz)

H4 = vuy	(u) + 2
3ux(uyuyz − uzuyy).

(5.9)

For the infinite Lie pseudogroups generated by Xα and Xβ , the Hamiltonians are

Hα = αv	(u) + 1
2αt

(
u2

y + u2
z

)
+ α(uzuxy − uyuxz) (5.10)

and

Hβ =
(

βy

2
v2 − βzuxv

)
	(u) − βy

2
uxx

(
u2

y + u2
z

)
+

1

2
u2

x(βyyuy + βyzuz) − εβyu. (5.11)

6
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In particular, the Hamiltonian of time translations Xβ=y = −∂t , that is Hβ=y = H1, coincides
with the Hamiltonian (4.1) of the CMA flow. For translations in x,Xβ=z = ∂x , the Hamiltonian
is Hβ=z = −uxv	(u). For a simple example of the symmetry Xα,Xα=z = z∂u, the
Hamiltonian is Hα=z = zv	(u) + uxuy which coincides with the Hamiltonian H0 (7.3)
from an infinite chain of Hamiltonians for a hierarchy of higher commuting flows in section 7.

All of these Hamiltonians of the symmetry flows are conserved densities of the CMA
flow (4.6).

6. Recursion operator

Complex recursion operators for symmetries of the heavenly equations of Plebañski were
introduced in the papers of Dunajski and Mason [8, 9]. We have used them in our method
of partner symmetries for obtaining non-invariant solutions of the complex Monge–Ampère
equation [10, 11] and Plebañski’s second heavenly equation [11] and, in a 2-component form,
for generating multi-Hamiltonian structure of Plebañski’s second heavenly equation in [1].
However, for CMA we have an additional condition that the equation and its symmetries
are real and hence recursion operators should also be real. Therefore, we shall derive real
recursion operators in a 2 × 2 matrix form.

We start with the symmetry condition for the original 1-component form (2.2) of CMA

u22̄ϕ11̄ + u11̄ϕ22̄ − u21̄ϕ12̄ − u12̄ϕ21̄ = 0 (6.1)

which in our 2-component notation ut = v, ϕt = ψ and in the real variables reads

a(ψt + ϕxx) + Q	(ϕ) − 2c(ψy + ϕxz) + 2b(ψz − ϕxy) = 0. (6.2)

The equation for symmetries (6.2) can be set in a 2-term divergence form

(Dt − iDx)[ia(ψ + iϕx) + (b − ic))(ϕy + iϕz)]

−(Dy − iDz)[(b + ic)(ψ + iϕx) − iQ(ϕy + iϕz)] = 0 (6.3)

that implies local existence of the 2-component potential (ϕ̃, ψ̃ = ϕ̃t ) defined by the equations

ψ̃ − iϕ̃x = (b + ic)(ψ + iϕx) − iQ(ϕy + iϕz)

ϕ̃y − iϕ̃z = (b − ic)(ϕy + iϕz) + ia(ψ + iϕx).
(6.4)

We solve the second equation (6.4) with respect to ϕ̃,

ϕ̃ = 	−1(Dy + iDz)[a(iψ − ϕx) + (b − ic)(ϕy + iϕz)] (6.5)

differentiate this with respect to x and use ϕ̃x in the first equation (6.4) to obtain ψ̃ ,

ψ̃ = (b + ic)(ψ + iϕx) + Q(ϕz − iϕy)

+ 	−1(Dy + iDz)Dx[−a(ψ + iϕx) + (c + ib)(ϕy + iϕz)]. (6.6)

In a matrix form, the transformation from (ϕ, ψ) to (ϕ̃, ψ̃) reads(
ϕ̃

ψ̃

)
= Rc

(
ϕ

ψ

)
, (6.7)

where the operator Rc is defined by

Rc =

⎛
⎜⎝

	−1D+[−aDx + (b − ic)D+] i	−1D+a

i{(b + ic)Dx − QD+

+ 	−1DxD+[−aDx + (b − ic)D+]} b + ic − 	−1DxD+a

⎞
⎟⎠ , (6.8)

7
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where we define D+ = Dy + iDz. As we shall immediately show, taking a real part of the
operator (6.8) will give us the first real recursion operator R1 for symmetries:

R1 =
(

0 0
QDz − cDx b

)

+ 	−1

(
Dy(−aDx + bDy + cDz) + Dz(cDy − bDz) −Dza

Dx[Dy(cDy − bDz) + Dz(aDx − bDy − cDz)] −DxDya

)
, (6.9)

where 	−1 means operator multiplication. A straightforward, though cumbersome, calculation
shows that the operator R1 commutes with the operatorA (5.3) of the symmetry condition (5.2)
on solutions of equations (4.6) and therefore it is indeed a recursion operator for symmetries
of the CMA system . This means that if (ϕ̃, ψ̃) is obtained by transforming a 2-component
symmetry characteristic (ϕ, ψ) of the system (4.6) by the operator R1(

ϕ̃

ψ̃

)
= R1

(
ϕ

ψ

)
, (6.10)

then (ϕ̃, ψ̃) is also a symmetry characteristic of (4.6) and so (6.10) is a real recursion relation
for symmetries of the CMA system, the real part of the complex recursion (6.7). If we used
(6.7) with the complex recursion operator Rc, the imaginary part of (6.7) would then give the
constraint

R2

(
ϕ

ψ

)
=

(
0
0

)
, (6.11)

where R2 is the imaginary part of Rc, which restricts the set of symmetries (ϕ, ψ). To avoid
this restriction, we choose (6.10) as the definition of the transformed symmetry (ϕ̃, ψ̃) and
not (6.7).

Moreover, vanishing of the commutator [R1,A], computed without using the equations
of motion (4.6), reproduces the CMA system (4.6) and hence the operators R1 and A
form a Lax pair for the 2-component system. Indeed, introducing a short-hand notation
F = ut −v,G = vt +uxx −Q, = Fxy −Gz and χ = Fxz +Gy , we rewrite the CMA system
in the form F = 0,G = 0, so that  = 0 and χ = 0 on its solutions, and the commutator
reads

[R1,A] =
(

0 0
1
a [Q	(F) − 2(b + cχ)] Dz −

)
+ 	−1

×

⎛
⎜⎜⎜⎜⎜⎝

(D2
z − D2

y) − 2χDyDz

+ Dy	(F)Dx − 	(Fx)Dy − 	(G)Dz,
Dz	(F)

2(DzχDx + DxDy)Dz − Dz	(F)D2
x

+ χx(D
2
z − D2

y) + [2χz − 	(G)]DxDy

+ 	(Gy)Dx − 	(Gx)Dy

DxDy	(F)

⎞
⎟⎟⎟⎟⎟⎠ (6.12)

so [R1,A] = 0 implies F = 0,G = 0, that is, the CMA system (4.6). This real Lax pair is
formed by the recursion operator for symmetries and operator A of the symmetry condition
and so it is a Lax pair of the Olver–Ibragimov–Shabat type [12, 13], which is different from
the complex Lax pairs suggested by Mason and Newman [14, 15] and Dunajski and Mason
[8, 9] and those that we used in [10, 11] in relation to partner symmetries, even if we set our
new Lax pair in a 1-component form. Furthermore, the commutator of the complex recursion
operator of Mason–Dunajski with the operator of the symmetry condition, in a 1-component
form, reproduces the symmetry condition and not the original equation CMA [10].
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We note that if we multiply the symmetry condition (6.2) by i, write it again in a two-term
divergence form and introduce the corresponding 2-component potential (ϕ̃′, ψ̃ ′), then we end
up with the second complex operator that differs from (6.8) by the interchange of its real and
imaginary parts: the new real part R2 will coincide with the imaginary part of (6.8) whereas
the new imaginary part will be equal to −R1. Now the real part of the transformation from
(ϕ, ψ) to (ϕ̃′, ψ̃ ′) reads

(
ϕ̃′

ψ̃ ′

)
= R2

(
ϕ

ψ

)
(6.13)

with R2 defined by

R2 =
(

0 0
bDx − QDy c

)

+ 	−1

(
Dy(bDz − cDy) + Dz(−aDx + bDy + cDz) Dya

Dx[Dy(−aDx + bDy + cDz) + Dz(cDy − bDz)] −DxDza

)
. (6.14)

Again we check that R2 commutes with the operator A (5.3) of the symmetry condition
(5.2) on solutions of equations (4.6) and therefore this is the second recursion operator for
symmetries of the CMA system. The commutator [R2,A] has the form similar to (6.12) and
hence vanishing of the commutators [R2,A], computed without using the equations of motion
(4.6), reproduces the CMA system (4.6). In fact, R2 can be obtained from R1 by the discrete
transformation

y 	→ z, z 	→ −y �⇒ b 	→ c, c 	→ −b,  	→ χ, χ 	→ − (6.15)

while A remains invariant under (6.15) and so an explicit form of the commutator [R2,A]
could be obtained by applying (6.15) to (6.12).

Thus, both operators R1 and R2 form together with A two real Lax pairs of the Olver–
Ibragimov–Shabat type for the 2-component system (4.6).

7. Two bi-Hamiltonian representations of the CMA system

By the theorem of Magri, given a Hamiltonian operator J and a recursion operator R,RJ is
also a Hamiltonian operator [3]. Thereby, by acting with the recursion operator R1 on the first
Hamiltonian operator J0 (3.7), we obtain the second Hamiltonian operator

J1 = R1J0 = 	−1

(
Dz −DxDy

DxDy D2
xDz

)

+

⎛
⎝ 0 b

a

−b
a

c
a2 (bDy − aDx) + (Dyb − Dxa) c

a2 + (c2 − b2 + ε)

2a2 Dz + Dz
(c2 − b2 + ε)

2a2

⎞
⎠

(7.1)

that is explicitly skew-symmetric. The proof of the Jacobi identity for J1 is lengthy but can
be somewhat facilitated by using Olver’s criterion in terms of functional multi-vectors [6].
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Similarly, acting by the recursion operator R2 on the Hamiltonian operator J0, we obtain
a Hamiltonian operator that is another companion for J0:

J 1 = R2J0 = 	−1

(
Dy DxDz

−DxDz D2
xDy

)

+

⎛
⎝ 0 − c

a

c
a

b
a2 (cDz − aDx) + (Dzc − Dxa) b

a2 + (b2 − c2 + ε)

2a2 Dy + Dy
(b2 − c2 + ε)

2a2

⎞
⎠

(7.2)

that is also explicitly skew-symmetric. The Jacobi identity for J 1 was also proved by using
Olver’s criterion in terms of functional multi-vectors [6].

The flow (4.6) can be generated by the Hamiltonian operator J1 from the Hamiltonian
density

H0 = zv	(u) + uxuy (7.3)

so that CMA in the 2-component form (4.6) admits two Hamiltonian representations(
ut

vt

)
= J0

(
δuH1

δvH1

)
= J1

(
δuH0

δvH0

)
(7.4)

and thus it is a bi-Hamiltonian system.
The same flow (4.6) can also be generated by the Hamiltonian operator J 1 from the

Hamiltonian density

H 0 = yv	(u) − uxuz (7.5)

which yields another bi-Hamiltonian representation of the CMA system (4.6),(
ut

vt

)
= J0

(
δuH1

δvH1

)
= J 1

(
δuH

0

δvH
0

)
. (7.6)

We note that the Hamiltonian operator J 1 and the Hamiltonian density H 0 could be obtained,
up to an overall minus sign, by applying the discrete transformation (6.15) to J1 and H0,
respectively.

Repeating this procedure n times, we obtain a multi-Hamiltonian representation of the
CMA system with the Hamiltonian operators Jn = Rn

1J0, J
n = Rn

2J0, J
n−m
m = Rm

1 Rn−m
2 J0

(m = 1, 2, . . . , n − 1) and the corresponding Hamiltonian densities. This procedure will be
considered in more detail in the following section for the operator R1. The multi-Hamiltonian
structure of the CMA system proves its complete integrability in the sense of Magri and hence
the complete integrability of the (anti-)self-dual gravity in four real dimensions with either
Euclidean or ultra-hyperbolic signature.

A totally different recursion operator for the (anti-)self-dual gravity in complex Einstein
spaces was obtained much earlier by Strachan [16] by using a Legendre transformed version
of the first heavenly equation, which was derived by Grant [17]. This recursion operator
can be factorized which suggests a bi-Hamiltonian structure of the resulting evolutionary
equation, though that was not completely proved. However, the evolutionary equation and the
related Hamiltonian structures are expressed in complex variables, with the complex ‘time’
t in particular, and with a complex unknown. Therefore, the corresponding metric will not
correspond to the (anti)-self-dual gravity in real Einstein spaces with the Euclidean signature
(+ + ++). Furthermore, the Poisson bracket contains the unusual operator ∂−1

t that could be
avoided in a 2-component formulation.
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8. Infinite hierarchy of higher flows

The operators J0 and J1 are compatible Hamiltonian operators, i.e. they form a Poisson pencil.
This means that every linear combination C0J0 + C1J1 with constant coefficients C0 and C1

satisfies the Jacobi identity. This can be more easily verified by using the Olver criterion in
terms of functional multi-vectors though the calculation is still very lengthy. We know from
the work of Fuchssteiner and Fokas [18] (see also the survey [19] and references therein) that if
a recursion operator has a factorized form, as in our case R1 = J1J

−1
0 ≡ J1K , and the factors

J0 and J1 are compatible Hamiltonian operators, then R1 is a hereditary (Nijenhuis) recursion
operator, i.e. it generates an Abelian symmetry algebra out of commuting symmetry generators.
Moreover, the Hermitian conjugate hereditary recursion operator R

†
1 = J−1

0 J1 = KJ1, acting
on the vector of variational derivatives of an integral of the flow, yields a vector of variational
derivatives of some other integral of this flow. Then (7.4) implies that R

†
1 generates the

Hamiltonian density H1 from H0:

R
†
1

(
δuH0

δvH0

)
= J−1

0 J1

(
δuH0

δvH0

)
=

(
δuH1

δvH1

)
, (8.1)

where R
†
1 is defined by

R
†
1 =

(
0 Dxc − DzQ

0 b

)

+

⎛
⎝(−Dxa + Dyb + Dzc)Dy

+(Dyc − Dzb)Dz

aDz

[(Dzb − Dyc)Dy

+(−Dxa + Dyb + Dzc)Dz]Dx

aDxDy

⎞
⎠ 	−1. (8.2)

The first higher flow of the hierarchy is generated by J1 acting on the vector of variational
derivatives of H1(

ut1

vt1

)
= J1

(
δuH1

δvH1

)
, (8.3)

where t1 is the time variable of the higher flow. This flow is nonlocal and the right-hand side
of (8.3) is too lengthy to be presented here explicitly.

Now we could generate the next Hamiltonian H2 of the hierarchy of commuting flows by
applying R

†
1 to the vector of variational derivatives of H1:

R
†
1

(
δuH1

δvH1

)
= KJ1

(
δuH1

δvH1

)
=

(
δuH2

δvH2

)
. (8.4)

Therefore, the second higher flow in the hierarchy has a bi-Hamiltonian representation(
ut2

vt2

)
= J1

(
δuH2

δvH2

)
= J1R

†
1

(
δuH1

δvH1

)
= J2

(
δuH1

δvH1

)
, (8.5)

where the third Hamiltonian operator J2 is generated by acting with R1 on J1: J1R
†
1 =

J1KJ1 = R1J1 = J2. Acting by J2 on the variational derivatives of H0, we obtain the
relations

J2

(
δuH0

δvH0

)
= J1R

†
1

(
δuH0

δvH0

)
= J1

(
δuH1

δvH1

)
= J0R

†
1

(
δuH1

δvH1

)
= J0

(
δuH2

δvH2

)
, (8.6)

where we have used that J1 = J0(KJ1) = J0R
†
1. From (8.6) we obtain three-Hamiltonian

representation of the first higher flow(
ut1

vt1

)
= J1

(
δuH1

δvH1

)
= J2

(
δuH0

δvH0

)
= J0

(
δuH2

δvH2

)
. (8.7)
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We could also construct the Hamiltonian H−1 such that H0 is generated from H−1 by R
†
1:

R
†
1

(
δuH−1

δvH−1

)
= J−1

0 J1

(
δuH−1

δvH−1

)
=

(
δuH0

δvH0

)
(8.8)

that implies a bi-Hamiltonian representation for the zeroth flow(
ut0

vt0

)
= J0

(
δuH0

δvH0

)
= J1

(
δuH−1

δvH−1

)
. (8.9)

Further we obtain

J2

(
δuH−1

δvH−1

)
= J1R

†
1

(
δuH−1

δvH−1

)
= J1

(
δuH0

δvH0

)
(8.10)

and the bi-Hamiltonian representation (7.4) of the original 2-component CMA flow becomes
a three-Hamiltonian representation of this flow,(

ut

vt

)
= J0

(
δuH1

δvH1

)
= J1

(
δuH0

δvH0

)
= J2

(
δuH−1

δvH−1

)
. (8.11)

We could still continue by applying R
†
1 to the vector of variational derivatives of H2 to

generate the next Hamiltonian H3,

R
†
1

(
δuH2

δvH2

)
= KJ1

(
δuH2

δvH2

)
=

(
δuH3

δvH3

)
(8.12)

and obtain a bi-Hamiltonian representation for the next higher flow,(
ut3

vt3

)
= J1

(
δuH3

δvH3

)
= R1J1

(
δuH2

δvH2

)
= J2

(
δuH2

δvH2

)
, (8.13)

where we have used (8.12) and the relation J1KJ1 = R1J1 = J2, and so on.
All these constructions can also be applied to the second recursion operator R2.

9. Conclusion

Our starting point was the symplectic and Hamiltonian structure of the complex Monge–
Ampère equation, set into a 2-component evolutionary form. We have calculated all point
symmetries of the CMA system and also, using the inverse Noether theorem, the Hamiltonians
of the flows for all variational symmetries. These Hamiltonians yield conservation laws for the
CMA flow. We have found two real 2×2 matrix recursion operators R1 and R2 for symmetries
that commute with the operator A of the symmetry condition and hence map any symmetry
of the CMA system again into a symmetry. The operators R1 and R2 together with A form
two Lax pairs for the 2-component CMA system. Acting on the first Hamiltonian operator
by each recursion operator, we obtain two new Hamiltonian operators according to Magri’s
theorem [3] and two bi-Hamiltonian representations of the complex Monge–Ampère equation
in the 2-component form. Repeating this action, we could generate an infinite number of
Hamiltonian operators and hence construct a multi-Hamiltonian representation of the CMA
system. We show how to construct an infinite hierarchy of higher commuting flows together
with the corresponding infinite chain of their Hamiltonians by using a Hermitian conjugate
recursion operator. In particular, we arrive at three-Hamiltonian representations for both the
CMA flow and the first higher flow and bi-Hamiltonian representations for the zeroth flow and
second higher flow.

The results of this paper prove a complete integrability of the (anti-)self-dual gravity in
four real dimensions in the sense of Magri (a multi-Hamiltonian representation).
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